
Fig. 4. 𝝁p-Calculus formula that either reads 
a 𝒑 or performs a step and starts again.
Since 𝝁 allows finitely many repetitions, 
a 𝒑 must be reached eventually.

Fig. 5. p-automaton that either reads a 𝒑 or 

checks again. Since the topmost states  
can be visited only finitely many times, 
a 𝒑 must be read eventually. 

For every 𝝁p-calculus formula we can construct a 

p-automaton that accepts exactly those Markov 

chains that satisfy the formula [3]. 

The components of the automaton resulting from 

the conversion are:

1. States originate from sub-formulas of the

form: propositions, negated propositions, 

next, and quantified next; plus accepting 

and rejecting states.

2. Alphabet is the powerset of propositions 

appearing in the formula.

3. Transitions preserve the Boolean

connectives (∨, ∧) and unfold the next

operators into their nested sub-formulas.

4. Initial condition derives from the main 

formula without fixpoints.

5. Acceptance reflects the type of fixpoints

that enclose the sub-formula/state (𝜇 ↔

odd, 𝜈 ↔ even) and their potential 

nesting. Accepting and rejecting states 

are assigned numbers 0 and 1, 

respectively.

For every p-automaton we can construct a 𝝁p-

calculus formula satisfied in exactly those Markov 

chains accepted by the automaton [3].

The translation exploits the parallel between 

components of the automaton and elements of 

μp-calculus formulas:

• Propositions are taken from the alphabet.

• Boolean connectives match the and/or

combinations of states defined by the 

transitions and initial condition.

• Next reflects the automaton’s transitions.

• Probabilistic quantification is placed 

corresponding to bounded states of the 

automaton.

• Fixpoints are decided by looking at those 

states that are visited indefinitely and their 

acceptance number.

Markov Chains
A Markov chain is a probabilistic transition system 

defined by the four components:  

1) Set of Locations;  2) Initial location;  

3) Probability function; 4) Labelling function.

The probability of moving from one location to each 

of its successors is a number in [0,1]. The sum of 

probabilities over all successors must be equal to 1. 
𝛍p-Calculus
The μp-calculus [1] is a probabilistic temporal 

logic. Formulas are built up from the 

combination of:

• Atomic propositions p, ¬p

• Boolean connectives ∨, ∧

• Next operator Ο𝜑

• Probabilistic quantification [𝜑]J
• Fixpoints μX. 𝜑,  νX. 𝜑

Using the fixpoint operators this logic can express 

finite and infinite iterations of properties:

Least fixpoint μ Finitely many iterations

Greatest fixpoint   ν Infinitely many iterations

Formulas φ contained inside a probabilistic 

quantification are associated with a probability 

value in [0,1]. The operator [·]J checks whether 

the value of the formula meets the bound J (of 

the form ≥ 𝒙 or > 𝒙), and gets the value 1 or 0 

accordingly. Therefore, top-level formulas are 

qualitative: either true or false.

When a μp-calculus formula is true on a Markov 

chain, we say that the Markov chain satisfies the 

formula. 

Fig. 1.   Markov chain.

Fig. 2. μp-Calculus formulas true on the Markov chain of Fig. 1.

p-Automata
A p-automaton [2] is an automaton that reads a 

Markov chain as input and decides whether to 

accept it or not. It is characterised by five 

components: 

1. States are the elementary blocks and, to

handle probabilities, may be enclosed in a 

probabilistic quantification ∙ J.

2. Alphabet contains symbols that are read by the

automaton, triggering a specific transition. 

3. Transitions allow the automaton to move from 

one state to a Boolean (and/or) combination

of them, depending on the symbol read.

4. Initial condition is a state, or a combination

thereof, from which the automaton begins its 

computation. 

5. Acceptance assigns a number to each state.

Only states that are marked by an even

number can be visited infinitely often. 

Fig. 3. A graph representing a p-automaton with: 

alphabet { p,s }, states { q1, q2, q3, acc, rej },  
transitions=edges, initial condition ۤ q1 .𝟎.𝟓≤ۥ
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We model stochastic systems through Markov chains and specify and evaluate their 

properties using probabilistic temporal logics and automata. In general, logics offer a 

clearer syntax and automata provide better performance in terms of computability. 

Therefore, it is important to define classes of logics and automata that have the same 

expressive power and can be used interchangeably. Here, we focus 

on two such formalisms known as p-calculus 

and p-automata.
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We have summarised the analogies that allow 

the translation from μp-calculus to p-automata 

and backwards. The mutual correspondence 

of the two languages implies their equivalence

in expressive power; thus, lifting the well-known 

connection between logics and automata 

theory to a probabilistic scenario. 
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